Hertzano, Ronna

您所在的位置:网站首页 hereditary hearing loss in women Hertzano, Ronna

Hertzano, Ronna

#Hertzano, Ronna | 来源: 网络整理| 查看: 265

Identification and characterization of transcription factors with key roles in inner ear development:

Disabling hearing loss afflicts over 50% of the population over the age of 70 and the final common pathway of most forms of hearing loss involves the loss of hair cells, the sensory cells of the ear. Our team takes a cell type-specific multi-omic approach to identify key regulators of cell type-specific differentiation in the ear, which could later be applied towards hair cell regeneration. Four of our key findings have been the identification of ZEB1 and miR-200b as the major determining factors of epithelial fate in the ear; RFX1 and RFX3 as transcription factors that are necessary for the terminal differentiation and survival of early postnatal auditory hair cells in mice; IKZF2 as a regulator of outer hair cell functional maturation; and most recently, the molecular mechanism by which GFI1 promotes hair cell differentiation during early development (‘GFI1 functions to repress neuronal gene expression in developing hair cells’ manuscript in preparation). RFX and IKZF2 are amongst very few regulators that have been shown to play a role in hair cell terminal differentiation – a necessary step for successful hair cell regeneration.

 

Hertzano R, Elkon R, Kurima K, Morrisson A, Chan SL, Sallin M, Biedlingmaier A, Darling DS, Griffith AJ, Eisenman DJ and Strome SE. (2011) Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis. PLoS Genet. 7:e1002309. PMCID: PMC3183091 Chessum L*, Matern M*, Kelly MC, Johnson SL, Ogawa Y, Milon B, McMurray M, Driver EC, Parker A, Song Y, Codner G, Esapa CT, Prescott J, Trent G, Wells S, Dragich AK, Frolenkov GI, Kelley MW, Marcotti W, Brown SDM, Elkon R, Bowl MR, and Hertzano R (2018) Ikzf2/helios is a key transcriptional regulator of outer hair cell maturation. Nature Nov;563(7733):696-700. PMCID: PMC6542691 Hertzano R, Gwilliam K, Rose KP, Milon B and Matern M (2020) Cell Type-Specific Expression Analysis of the Inner Ear – A Technical Report. The Laryngoscope (Triologic Thesis) Jun 24.  Elkon R, Milon B, Morrison L, Shah M, Vijayakumar S, Racherla M, Leitch CC, Silipino L, Hadi S, Weiss-Gayet M, Barras E, Schmid CD, Ait-Lounis A, Barnes A, Song Y, Eisenman DJ, Eliyahu E, Frolenkov GI, Strome SE, Durand B, Zaghloul NA, Jones SM, Reith W and Hertzano R. (2015) RFX transcription factors are essential for hearing in mice. Nat Commun. Oct 15;6:8549. PMCID: PMC4634137

 

 

Development and application of approaches for cell type-specific analysis in the ear and data sharing: The inner ear sensory epithelium is complex and consists of multiple cell types. Cell type-specific analyses are helpful in defining the regulatory pathways that determine cell fate. In order to define cell type-specific regulatory pathways in inner ear development, we characterized the expression of transmembrane cell surface proteins (CD proteins) in the inner ear. We subsequently identified combinations of markers that could allow for inner ear cell type-specific isolation using flow cytometry. We continue to develop and apply new approaches for cell type transcriptome and translatome analysis in the ear in both mouse and zebrafish and are actively involved in their dissemination in the field. Finally, we developed and maintain the gEAR portal (gene Expression Analysis Resource umgear.org), a website for cell type-specific visualization, sharing and analysis. The gEAR portal has now turned into a primary site for multi-omic data sharing for researchers in the ear field and has been cloned to serve additional research communities (e.g., nemoanalytics.org for neuroscience).

 

Hertzano R and Elkon R. (2012) High throughput gene expression analysis of the inner ear. Hear Res. 288:77-88 **this article was listed in Faculty 1000 Song Y, Milon B, Ott S, Zhao X, Sadzewicz, Shetty A, Boger ET, Tallon LJ, Morell RJ, Mahurkar A and Hertzano R (2018) A comparative analysis of library prep approaches for sequencing low input translatome samples. BMC Genomics 2018 Sep 21;19(1):696. PMCID: PMC6151020 Kolla L, Kelly MC, Mann ZF, Anaya-Rocha A, Ellis K, Lemons A, Palermo AT, So KS, Mays JC, Orvis J, Burns JC, Hertzano R, Driver EC and Kelley MW. (2020) Characterization of the development of the cochlear epithelium at the single cell level. Nature Communications May 13;11(1):2389. Matern MS, Beirl A, Ogawa Y, Song Y, Paladugu N, Kindt KS, Hertzano R. (2018) Transcriptomic Profiling of Zebrafish Hair Cells Using RiboTag. Front Cell Dev Biol. 2018 May 1;6:47. doi: 10.3389/fcell.2018.00047. eCollection 2018. PMCID: PMC5939014

 

 

The POU4F3 and GFI1 transcriptional cascades in hair cell development: POU4F3 is an inner ear hair cell-specific transcription factor that is expressed in the hair cells shortly after they are formed. Mutations in POU4F3 underlie human hereditary hearing loss. In the mouse, loss of Pou4f3 results in early degeneration of all inner ear hair cells. My graduate thesis work focused on identification and characterization of the targets of POU4F3 in hair cells. Several of these targets have been subsequently identified to be important for hearing in human (LHX3) or critical for increasing the efficiency of transforming stem cells to hair cells (GFI1). My laboratory now continues to study the function of the GFI1 signaling cascade in hair cell development.

 

Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yücel R, Frankel WN, Rechavi G, Möröy T, Friedman TB, Kelley MW and Avraham KB. (2004) Transcription profiling of inner ears from Pou4f3ddl/ddl identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet. 13:2143-53. Fiolka K, Hertzano R, Zeng H, Hermesh O, Avraham KB, Dührsen U and Möröy T. (2006) Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-overlapping functions in inner ear development. EMBO Reports. 7:326-33. PMCID: PMC1456886 Matern M, Margulies Z, Milon B, Song Y, Vijayakumar S, Elkon R, Zhang X, Jones SM and Hertzano R. (2017) Gfi1Cre mice have early onset mid- to high-frequency hearing loss and induce recombination in numerous inner ear non-hair cells. Sci Rep. 7:42079 PMCID: PMC5299610 Matern M, Milon B, Ogawa Y, Tkaczuk A, McMurray M, Song Y, Elkon R, and Hertzano R. (2019) Reconstructing the Transcriptional Network Downstream of GFI1 in Hair Cell Development. Association for Research in Otolaryngology, 42TH Annual MidWinter Meeting, Baltimore (MD), USA

 

Understanding the molecular basis of noise induced hearing loss (NIHL) and sex differences in hearing – a step towards therapeutics: NIHL afflicts 5% of the population worldwide. To date there are no effective interventions to prevent or treat NIHL. Through a project funded by the Department of Defense we worked towards developing the blueprint of the cell type-specific molecular changes that occur as a result of NIHL, we have shared many of the results pre-publication, as podium or poster presentations (manuscripts in preparation). However, in the process of performing the NIHL studies we identified striking sex-related differences in the response of male and female mice to noise trauma and its possible treatments. We are actively studying the molecular basis of sex differences in hearing, have published and shared some of our results, and plan to harness our findings to develop novel therapeutic interventions.    

 

Milon B, Mitra S, Song Y, Margulies Z, Casserly R, Drake V, Mong JA, Depireux DA, Hertzano R. (2018) The impact of biological sex on the response to noise and otoprotective therapies against acoustic injury in mice. Biol Sex Differ. Mar 12;9(1):12. PMCID: PMC5848513 Hertzano R, Milon B, Mitra S, Ogawa Y, Shetty A, Zhang X, Depireux D and Elkon R. (2018) A Cell Type-Specific Blueprint of the Molecular Changes Following Noise Exposure; Association for Research in Otolaryngology, San Diego, CA, USA Shuster BZ, Depireux DA, Mong JA and Hertzano R. (2019) Sex differences in hearing: Probing the role of estrogen signaling. 145, 3656. PMCID: PMC6588519 Shuster B, Casserly R, Viechweg S, Lipford E, Davidson K, Olszewski R, Enoch J, McMurray M, Milon B, Rutherford M, Ohlemiller K, Hoa M, Depireux D, Mong J and Hertzano R (2020) Evaluating estrogen’s multi-modal modulatory potential: a framework for understanding protection from noise-induced hearing loss; Association for Research in Otolaryngology, San Jose, CA, USA.

 

Identification and characterization of genes that function in inner ear development and underlie hearing and balance disorders in human and in mice: Hereditary hearing loss is highly heterogeneous with over 150 genes estimated to underlie congenital non-syndromic hearing loss. The significance in identification of genes that underlie hereditary hearing loss is purely translational. As more genes are identified, patients can get better genetic counseling, and in the future, personally-tailored hearing restoration. My work on the identification of genes that underlie hearing loss ranges from projects that I spearheaded, using ENU-induced mouse mutants, to contributions to collaborative projects in human or mouse. Our recently identified hair cell-enriched transcripts in mouse, have been translated into a diagnostic discovery panel in collaboration with Richard Smith, PhD (as part of NIH R01, DC003544).

 

Hertzano R*, Shalit E*, Rzadzinska AK*, Dror AA, Song L, Ron U, Tan JT, Starovolsky Shitrit A, Fuchs A, Hasson T, Ben-Tal N, Sweeney HL, Hrabe de Angelis M, Steel KP and Avraham KB. (2008) A Myo6 mutation destroys coordination between the myosin heads, revealing new functions of myosin VI in the stereocilia of mammalian inner ear hair cells. PLoS Genetics. Oct3;4(10):e1000207. PMCID: PMC2543112 Kurima K, Hertzano R, Gavrilova O, Monahan K, Shpargel KB, Nadaraja G, Kawashima Y, Lee KY, Ito T, Higashi Y, Eisenman DJ, Strome SE and Griffith AJ. (2011) A noncoding point mutation of Zeb1 causes multiple developmental malformations and obesity in Twirler mice. PLoS Genet. 7:e1002307. PMCID: PMC3183090 Jung JS, Zhang KD, Wang Z, McMurray M, Tkaczuk A, Ogawa Y, Hertzano R and Coate TM. (2019) Semaphorin-5B Controls Spiral Ganglion Neuron Branch Refinement During Development. J Neurosci. 17 Jun 2019 [Epub ahead of print]. PMCID: PMC6697390 Brooks PM, Rose KP, MacRae ML, Rangoussis KM, Gurjar M, Hertzano R, Coate TM. (2020) Pou3f4-expressing otic mesenchyme cells promote spiral ganglion neuron survival in the postnatal mouse cochlea. J Comp Neurol. Jan 29 [Epub ahead of print]. PMCID – In Process

 

 



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3